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Abstract
Many HPC and modern Big Data processing applications belong
to a class of so-called scale-out applications, where the applica-
tion dataset is partitioned and processed by a cluster of machines.
Understanding and assessing the scalability of the designed appli-
cation is one of the primary goals during the application imple-
mentation. Typically, in the design and implementation phase, the
programmer is bound to a limited size cluster for debugging and
performing profiling experiments. The challenge is to assess the
scalability of the designed program for its execution on a larger
cluster. While in an increased size cluster, each node needs to pro-
cess a smaller fraction of the original dataset, the communication
volume and communication time might be significantly increased,
which could become detrimental and provide diminishing perfor-
mance benefits. The distributed memory applications exhibit com-
plex behavior: they tend to interleave computations and commu-
nications, use bursty transfers, and utilize global synchronization
primitives. Therefore, one of the main challenges is the analysis
of bandwidth demands due to increased communication volume as
a function of a cluster size. In this paper1, we introduce a novel
approach to assess the scalability and performance of a distributed
memory program for execution on a large-scale cluster. Our solu-
tion involves 1) a limited set of traditional experiments performed
in a medium size cluster and 2) an additional set of similar ex-
periments performed with an “interconnect bandwidth throttling”
tool, which enables the assessment of the communication demands
with respect to available bandwidth. This approach enables a pre-
diction of a cluster size, where a communication cost becomes a
dominant component, at which point the performance benefits of
the increased cluster lead to a diminishing return. We demonstrate
the proposed approach using a popular Graph500 benchmark.

1. INTRODUCTION
In the last few years, graph algorithms have received much at-

tention and become increasingly important for solving many prob-
lems in social networks, web connectivity, scientific computing,

1This work was originated and largely completed during S. Medya’s internship at
Hewlett Packard Labs in summer 2015.
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data mining, and other domains. The numbers of vertices in the
analyzed graph networks have grown from billions to tens of bil-
lions and the edges have grown from tens of billions to hundreds of
billions. A traditional way for improving performance application
is to store and process its working set in memory. As the prob-
lem size increases and it cannot fit into memory of a single server,
the distributed computing and memory resources are required for
holding the entire dataset in memory and processing it. This leads
to a scale-out execution, where each machine handles a portion of
the complete dataset, and needs to communicate with each other to
synchronize the executions.

Message passing interface (MPI) is a standard programming
paradigm for scale-out, distributed memory applications. Complex
MPI-based programs interleave computations and communications
in inter-tangled patterns which makes it difficult to perform an ac-
curate analysis of communication layer impact on application per-
formance and predict scaling properties of the program. Due to
asynchronous, concurrent execution of different nodes, many com-
munication delays between the nodes could be “hidden” (i.e., do
not contribute or impact the overall application completion time).
It happens when some nodes are still in their “computation-based”
or “processing” portions of the code, while the other nodes already
perform communication exchanges. Equally difficult is to analyze
the utilized (required) interconnect bandwidth during the execution
of MPI program due to a variety of existing MPI collectives and
calls that could involve different sets of nodes and communication
styles. At the same time, performance of such distributed memory
applications inherently depends on a performance of a communi-
cation layer of the cluster.

Designing and implementing an efficient and scalable distributed
memory program is a challenging task. Typically, during the initial
implementation and debugging phases, a programmer is limited to
experiments on a small/medium size cluster for application testing
and profiling. The challenge is to assess (predict) the scalability of
the designed program during its execution on a larger size cluster.
This scalability problem had existed for decades and some elabo-
rate and sophisticated ensembles of tools and simulators [11, 10,
6, 12, 5, 9, 2, 4, 1, 13, 14] were proposed by HPC community to
attack this challenging problem.

In this work, we discuss a new approach for assessing the scal-
ability and performance of distributed memory programs. We an-
alyze a recently introduced by HPC community Graph500 bench-
mark [3] for measuring and comparing computer’s performance in
memory retrieval. It implements a Breadth First Search algorithm
on graphs and uses as an input a synthetically generated scale-free
graph, which could be easily scaled to extremely large sizes. Our
approach is based on performing a limited set of traditional ex-
periments in a small/medium size cluster for assessing a baseline



program scalability. For deriving the interconnenct bandwidth de-
mands by the program in a larger size cluster and assessing these
demands’ scaling trend, we perform an additional set of similar ex-
periments augmented with the “interconnect bandwidth throttling”
tool [15], which helps to expose the communication demands of
the program with respect to required (utilized) interconnect band-
width. By combining the insights from these two complementary
sets of experiments, we could project the application performance
for larger cluster sizes, and in particular, the size, where a commu-
nication cost becomes a dominant component. At this point, the
performance benefits of the increased cluster size provide a dimin-
ishing return. The remainder of the paper presents our approach
and results in more detail.

2. WHAT MATTERS FOR APPLICATION
PERFORMANCE AND SCALABILITY?

In this work, we focus on the performance and scalability anal-
ysis of distributed shared memory programs, and graph algorithms
in particular. We demonstrate the problem and our approach by
considering the Graph500 benchmark [3] that implements Breadth
First Search (BFS) algorithm. BFS is an important algorithm as it
serves a building block for many other algorithms such as compu-
tation of betweenness centrality of vertices, shortest path between
two vertices, etc. Breadth First Search is a typical graph traversal
algorithm performed on an undirected, unweighted graph. A goal
is to compute a distance from a given source vertex s to each vertex
in the graph, i.e., finding all the vertices which are “one hop” away,
“two hops” away, etc. When reasoning about program performance
and its execution efficiency on a large-scale distributed cluster, the
following factors are critically important (see Figure 1):

1. Selected Underlying Algorithm: Graph problems could be
implemented in many different ways in terms of graph data parti-
tioning for parallel processing as shown in the top layer of Figure 1.
Data partitioning and algorithm details play an important role in
scalability analysis as it impacts algorithm’s communication style
and the communication volume (in a distributed scenario), and thus
the application completion time. There are a few well-known data
partitioning approaches (e.g., 1-D and 2-D) proposed for parallel
processing of BFS [8]. The 2-D partitioning algorithm was theo-
retically proven to be a scalable algorithm [8].

2. Implementation Code: Program performance and its scala-
bility further depends on the code that implements a selected/de-
signed algorithm. This is the middle layer shown in Figure 1. In
spite of excellent theoretical properties of the 2-D partitioning al-
gorithm, its inefficient implementation may result in a poorly per-
forming and badly scaling program. Therefore, the implementation
details are critical part of application performance and scalability.

3. Underlying System Hardware and Software: Finally, the
underlying system hardware, that is available and targeted for pro-
gram execution, is extremely important for program performance
and its scalability as shown by the bottom layer in Figure 1. Spe-
cially designed systems, such as Blue Gene and K Computer, have
proprietary, custom-built interconnects which provide enhanced
support for MPI collectives, and therefore, demonstrate superior
performance compared to commodity clusters.

Therefore, the scalability analysis and performance prediction
depends on the underlying graph problem/algorithm, its parallel
implementation, and the underlying system software and hardware.
Figure 1 illustrates these critical factors with some examples from
each category.

In the paper, we demonstrate our approach by using the 2-D par-
titioning IBM implementation of BFS algorithm [3] executed on
the commodity cluster (shown by the green boxes in Figure 1).
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Figure 1: Performance and scalability: example of critical factors.

In our experiments, we use a 32-node cluster connected via FDR
InfiniBand (56 Gbits/s). Each node is based on HP DL360 Gen9
servers with two sockets, each with 14 cores, 2 GHz, Xeon E5-2683
v3, 35 MB last level cache size, and 256 GB DRAM per node.

3. BASE LINEAR REGRESSION MODEL
There are different ways to formulate “scaling" of a particular

program. One of the classical methods is strong scaling. In strong
scaling, the problem data size is kept fixed and the number of pro-
cessors (nodes) to execute the program is increased. In a general
case, the completion time of a distributed memory program can be
modeled as follows:

CompletionTime = ProcessingTime+CommunicationTime

As the number of processors in the cluster is increased to p, one
would expect that the ProcessingTime in this equation will improve
by p times. With the assumption that the data is evenly distributed
over the nodes, the processing time can be approximated as O( 1

p ).
To estimate the CommunicationTime of a distributed memory

program as a function of number of processors p is a more chal-
lenging task. To our rescue comes a theoretical analysis of 2-D
partitioning implementation [8]: its communication pattern is well
known−the number of messages per processor is O(

√
p). We ex-

ploit this asymptotic analysis and include this factor in our model.
So, the communication time can be accounted as O( 1√

p ).
Base Linear Regression Model: we can derive the formulation

for Completion Time as linearly dependent on 1
p and 1√

p :

Completion Time(p) =C1 ∗
1
p
+C2 ∗

1
√

p
(1)

Figure 2 (a) shows measured completion times of Graph500 bench-
mark executed in our cluster for different graph sizes and number
of nodes in the cluster. We configured each node in the cluster to
execute 18 MPI processes, each with 1 thread. The legend “scale”
denotes the size of the graph [3]. The scale s defines the graph with
2s vertices and 16 ·2s edges, e.g., graph of scale 27 has 134 Million
vertices and 2.1 Billion edges, graph of scale 28 has 268 Million
vertices and 4.2 Billion edges, etc.
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Figure 2: The Graph500 completion time in a strong scaling scenario.

Note, that Figure 2 (b) shows the same measurements with Y-
axes in logscale format. If CompletionTime(p) would scale as
O( 1

p ) (i.e., no communication overhead) then in Figure 2 (b) one
can expect a straight line with a negative slope near 1 [7]. How-
ever, it is not the case, and the communication time represents an
essential component of the overall completion time of Graph500
execution.

Eq. 1 provides the formulation for CompletionTime as linearly
dependent on 1

p and 1√
p , where C1 and C2 are constants which

need to be derived from the asymptotic analysis. We aim to find
these constants via linear regression. Using a medium size clus-
ter N with n processors in total we obtain measured completion
times for BFS code on all possible sub-cluster configurations with
p processors, where p ≤ n. So, we have data points as a pair,
(time, number o f processors). We use these experimental data
in the set of equations (as shown below) and solve this set of equa-
tions for finding the coefficients C1 and C2 via linear regression:

CompletionTime1(p1) =C0 +C1 ∗
1
p1

+C2 ∗
1
√

p1

CompletionTime2(p2) =C0 +C1 ∗
1
p2

+C2 ∗
1
√

p2

... ... ... ...

where CompletionTimei is the corresponding completion time
when pi processors are used. C0 is added in regression methods to
characterize noise. A popular method for solving such set of equa-
tions is Least Squares Regression, which we use here. In statistics,
this is an approach for modeling the relationship between a scalar
dependent variable (e.g., CompletionTime here) and one or more
independent variables (e.g., 1

p and 1√
p ). The set of coefficients C0,

C1 and C2 is the model that describes the relationship.
For a fixed problem data size in Graph500, we perform experi-

ments with different number of nodes in our 32-node cluster (using
the same configuration per node), collect measurement data, and
then solve Eq. 1 with linear regression for finding constants C0, C1,
and C2. Figures 3 (a)-(b) show the regression results for problem
scales 27 and 28 respectively. The solution is based on collected
measurements of approximately 1000 data points.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Measured

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
re

di
ct

ed

(a) Scale = 27

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
re

di
ct

ed

(b) Scale = 28

Figure 3: Computing the Constants via Regression.

Two well studied measures to show quality of regression are R2

and “mean square” error. R2 is better being close to 1. We get R2 as
0.95 and 0.97 for scales 27 and 28 respectively. The corresponding
“mean square” errors (close to 0 is better) are 0.04 and 0.19. Both
types of errors reflect a high quality of regression results. The com-
puted coefficient C1 (57.67 and 102.1) is greater than C2 (3.8 an
10.3) in both cases (for scales 27 and 28 respectively). This result
shows that the processing time dominates the benchmark execution
time (i.e., CompletionTime) in a small/medium cluster.

4. ESTIMATING THE COMMUNICATION
BANDWIDTH DEMANDS

With an increased number of cluster nodes the communication
volume becomes a dominant component in Eq 1. Past literature [7]
shows that in a strong scaling scenario, the program performance
gets additionally impacted when system interconnect bandwidth
starts affecting the communication time. We need to assess the in-
creased bandwidth demands of a communication volume as a func-
tion of the increased cluster size. Unfortunately, there are no exist-
ing tools or common approaches to analyze the utilized (required)
interconnect bandwidth during the execution of general MPI pro-
gram. It is a very challenging task due to a variety of existing MPI
collectives and MPI calls that could involve different sets of nodes
and communication styles.

To overcome this challenge, we apply InterSense [15] - a special
interconnect emulator, which can control (throttle) the interconnect
bandwidth to determine how much bandwidth the program needs
before its completion time becomes impacted. It enables us to ac-
curately estimate the required (needed) bandwidth by the program.

Figures 4 (a)-(b) show the outcome of bandwidth throttling ex-
periments. We execute Graph500 benchmark for two different
dataset scales, 27 and 28, and four different cluster sizes. Each line
shows the benchmark completion times at different (controlled by
InterSense) interconnect bandwidth percentage. These plots show
that there is a non-linear relation between completion times and
available interconnect bandwidth. To get accurate estimates on the
required interconnect bandwidth, we experiment with 2% interval
in the range from 20% to 40%. As expected, the completion times
are higher with larger scales and smaller process configurations.
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Figure 4: Bandwidth Impact on the Completion Time.

For a particular configuration, we define Completion Time In-
crement (CTI) at an available bandwidth (bw) as the increment
in percentage w.r.t the completion time when 100% bandwidth is
available.

CT Ibw =
Completion Time at bw−Completion Time at 100

Completion Time at 100
(2)

Bandwidth Demand (BWCT I,p) is defined as the percentage of band-
width required to achieve the predefined CT I for a particular pro-
cessor configuration p.

Figure 4 shows that different cluster configurations have differ-
ent completion times when the available interconnect bandwidth is



varied. The question is how CT I is related to bandwidth demands
in a cluster with different number of nodes? So, the goal is to
predict the required interconnect bandwidth by Graph500 bench-
mark in the cluster with increased number of nodes. Then we can
incorporate the impact of increased bandwidth demands into the in-
creased communication time. As a result, we can estimate the clus-
ter size, where a communication cost becomes a highly dominant
component, at which point the performance (scalability) benefits in
the further increased cluster would lead to a diminishing return.

We aim to build a model of required interconnect bandwidth for
predicting these bandwidth demands in a larger size cluster. For
a particular problem scale (i.e., graph size), different CTIs have
similar trends as shown in Figure 5.
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Figure 5: Interconnect Bandwidth Demands.

We compute a single DemandConstant (DC) for all different
CTIs to predict the interconnect bandwidth demand for a larger
cluster configuration. First, we determine how two processors’ con-
figurations and their required bandwidth demands are related. We
follow the relation to determine a constant DCCT I,p1,p2 for a partic-
ular CT I, and two processors’ configurations :

BWCT I,p1

BWCT I,p2

= DCCT I,p1,p2

√
p1√
p2

where p1 > p2, and p1 and p2 are the number of processes in
the executed configurations. The intuition of the above relation
comes from 2-D partitioning algorithm, where a number of mes-
sages per processor is O(

√
p). DC is taken as an average over

all such DCpi,p j . Once DC is computed, one can use the follow-
ing equation to find the bandwidth demand (BWCT I,p′ ) for a larger
cluster size and a given CT I:

BWCT I,p′/BWCT I,p∗ = DC

√
p′

√
p∗

(3)

where p∗ is a number of processes in the smaller cluster size con-
figuration available.

Next, we validate our model by executing a set of experiments
with varying interconnect bandwidth, size of the graph, and number
of nodes in the cluster.

Prediction Accuracy of Bandwidth Demands: We aim to pre-
dict the interconnect bandwidth demands using Eq. 3 for a 25-node
cluster, and evaluate the accuracy of the designed model. Using
the collected measurements for clusters with 4, 9, and 16 nodes
(where each node is configured with 18 MPI processes, i.e., with
72, 162, 288 MPI processes respectively), we can obtain 3 different
combinations for each considered CTI (15 in total). Actual DC is
averaged over these 15 DCpi,p j s. Bandwidth demands for 25 nodes
(with 450 processes respectively) are computed using DC, Eq. 3,
and p∗ as 288 (16 nodes). The DC for scales 27 and 28 are 0.8 and
0.86 respectively.

Figures 6 (a)-(b) show the accuracy of the prediction. The error
(difference between predicted and measured) is lower than 2% and
0.5% for scales 27 (Fig. 6 (a)) and 28 (Fig. 6 (b)) respectively.
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Figure 6: Prediction of Required Bandwidth Demands.

5. CONCLUSION AND FUTURE WORK
Designing and implementing an efficient and scalable distributed

memory program is a challenging task. In this work, we discuss
a new approach for assessing the scalability and performance of
distributed memory programs by using Graph500 benchmark as a
motivating example. We show a set of critical factors that needs to
be taken into account for scalability analysis of a distributed mem-
ory program. Since a scalability of many distributed programs is
limited by their communication volume and the available intercon-
nect bandwidth, we show how one can derive the estimates on the
required interconnect bandwidth in a larger cluster from the exper-
iments performed in a small/medium cluster with an “interconnect
bandwidth throttling” tool. By combining the outcome of these
two components, we can estimate the cluster size, where a commu-
nication cost becomes a dominant component, at which point the
performance benefits of the increased cluster lead to a diminishing
return. In our future work, we plan to incorporate the dataset size
(i.e., graph size) as a scalability problem parameter.
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