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Abstract—Many HPC and modern large graph processing
applications belong to a class of scale-out applications, where
the application dataset is partitioned and processed by a
cluster of machines. Assessing the application scalability is
one of the primary goals during such application imple-
mentation. Typically, in the design phase, programmers are
limited by a small size cluster available for their experiments.
Therefore, predictive modeling is required for the analysis of
the application scalability and its performance in a larger
cluster. While in an increased size cluster, each node will
process a smaller portion of the original dataset, a higher
communication volume between a larger number of nodes
may cripple the application scalability and provide diminishing
performance benefits. One of the main challenges is the analysis
of bandwidth demands due to an increased communication
volume in a larger size cluster. In this paper1, we introduce a
novel regression-based approach to assess the scalability and
performance of a distributed memory program for execution
in a large-scale cluster. Our solution involves 1) a limited set of
traditional experiments performed in a small size cluster and
2) an additional set of similar experiments performed with
an “interconnect bandwidth throttling” tool, which exposes
the bandwidth impact on the application performance. These
measurements are used in creating an ensemble of analytical
models for performance and scalability analysis. Using a linear
regression approach, step by step, we incorporate into the
model the following important parameters: i) the number of
cluster nodes and application processes, ii) the dataset size, and
iii) interconnect bandwidth. We demonstrate our solution, its
power, and accuracy using a popular Graph500 benchmark,
which implements a Breadth First Search algorithm on large,
synthetically generated graphs. By utilizing measurements
collected in a 32-node cluster, we are able to project the
program performance in a large size cluster with hundreds
of nodes. The proposed approach and derived models help to
provide an early feedback to programmers on the scalability
and efficiency of their solution.

I. INTRODUCTION

During the past decade, graph algorithms have received
much attention and became increasingly important for solv-
ing many problems in social networks, web connectivity,
scientific computing, data mining, and other domains. The
sizes of analyzed graphs have grown significantly: the graphs
with billions of vertices and hundreds of billions of edges set
new processing frontiers. A traditional way for improving
graph application performance is to store and process its
working set in memory. As the problem size increases and
it cannot fit into memory of a single server, the distributed

1The paper was originated and partially completed during Sourav Me-
dya’s internship at Hewlett Packard Labs.

computing and memory resources are required for holding
the entire dataset in memory and processing it.

Message passing interface (MPI) is a standard program-
ming paradigm for scale-out, distributed memory applica-
tions. Performance of such applications inherently depends
on performance of communication layer in the cluster. Over
the past decade, traditional networking often gets replaced
by high-speed interconnects with Remote Direct Memory
Access (RDMA) technology for optimizing performance of
distributed memory applications. During the last couple of
years, many Big Data applications, such as Hadoop, Spark,
Memcached, etc., were re-written to take advantage of high-
performance RDMA-capable interconnects [1], [2], [3], [4]
which provide fast and high-bandwidth communications.

Designing and implementing an efficient and scalable
graph processing application is a challenging task. Complex
MPI-based programs interleave computations and commu-
nications which makes it difficult to perform an accurate
analysis of communication layer impact on application per-
formance and predict scaling properties of the program. The
scalability problem had existed for decades and some elabo-
rate and sophisticated ensembles of tools and simulators [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14] were proposed
by HPC community to attack this challenging problem.

Typically, during the initial implementation and debug-
ging phases, a programmer is limited to experiments in
a small size cluster for application testing and profiling.
The unavailability of large scale execution environment
makes it difficult (if not impossible) to evaluate the scaling
characteristics of the designed program.

In this work, we discuss a novel approach for predictive
modeling and scalability analysis of large graph analytics.
We consider the Graph500 benchmark [15], recently intro-
duced by HPC community for measuring and comparing
computer’s performance in memory retrieval. It implements
a Breadth First Search algorithm on graphs and uses as an
input synthetically generated, scale-free graphs, which could
be easily scaled to extremely large sizes. Using a limited
set of traditional experiments in a small size cluster, it is
very difficult to assess and predict the impact of intercon-
nect bandwidth on the application performance at scale.
Typically, in a small cluster, the communication volume
generated by the application is yet small and the inter-
connect bandwidth is plentiful. Therefore, the interconnect
contention does not manifests itself in an observable way.
For assessing the application bandwidth demands and their



scaling trends, we perform an additional set of experiments
with the “interconnect bandwidth throttling” tool [16], which
helps to expose communication demands of the program
and reveals the impact of limited interconnect bandwidth on
the application performance. Our earlier work-in-progress
report [17] sketches the initial approach and provides some
preliminary evidence of its effectiveness.

In this paper, we design an ensemble of analytical mod-
els for scalability and performance analysis of underlying
program in a large scale environment and provide a detailed
evaluation of these models. We start with creating a base
linear regression model, which predicts the program comple-
tion time as a function of the cluster size and the number of
application processes, for a given (fixed size) input dataset.
Then by combining collected data for different sizes of input
datasets, we derive a generalized linear regression model,
which predicts the program completion time as a function
of the dataset size and the cluster size. Both of these models
do not reflect the impact of interconnect bandwidth on the
program completion time since the available interconnect
bandwidth in the small size cluster is plentiful for the
program execution. Finally, by using the experimental data
with the “interconnect bandwidth throttling” tool, we derive
and incorporate the impact of interconnect bandwidth into
a refined regression model. This refined model provides a
more accurate performance and scalability projection of the
application behavior in a large-scale environment.

II. CRITICAL FACTORS

In this work, we focus on the performance and scalability
analysis of large graph analytics which utilizes a distributed
memory framework. Despite a diversity of graph applica-
tions, they exhibit a set of unique, common characteristics
discussed in literature [18]: graph computations are data-
driven, they are memory intensive with random data access
pattern. We demonstrate the problem and our approach by
considering the Graph500 benchmark [15], which imple-
ments a Breadth First Search (BFS) algorithm.

For analyzing a program performance and its execution
efficiency on a large-scale distributed cluster, the following
factors are critically important (see Figure 1):

1. Algorithm Efficiency: Graph problems could be im-
plemented in many different ways in terms of graph data
partitioning for parallel processing as shown in the top
layer of Figure 1. Data partitioning and algorithm details
play an important role in scalability analysis as it impacts
algorithm’s communication style and the communication
volume (in a distributed scenario), and thus the application
completion time. There are a few well-known data parti-
tioning approaches, such as 1-D (vertex-based) and 2-D
(edge-based) partitioning algorithms proposed for parallel
processing of BFS [19]. These algorithms have very different
communication patterns, which impact their performance
and scalability. The 2-D partitioning algorithm was theo-
retically proven to be a scalable algorithm [19].
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Figure 1. Performance and scalability: example of critical factors.

2. Implementation Efficiency: Program performance and
its scalability further depends on the code that implements
the selected/designed algorithm. This is the middle layer
shown in Figure 1. In spite of excellent theoretical properties
of the 2-D partitioning algorithm, its inefficient implemen-
tation may result in a poorly performing and badly scaling
program. Therefore, the efficient implementation is a critical
part of application performance and scalability.

3. Underlying System Hardware and Software: Finally,
the underlying system hardware, that is designated for
program execution, is extremely important for the program
performance and its scalability as shown by the bottom layer
in Figure 1. Specially designed systems, such as Blue Gene
and K Computer, have proprietary, custom-built intercon-
nects which provide enhanced support for MPI collectives,
and therefore, demonstrate superior performance compared
to commodity (network-based) clusters and more advanced
InfiniBand-based ones.

Therefore, the scalability analysis and performance pre-
diction depends on the underlying graph problem/algorithm,
its parallel implementation, and the underlying system soft-
ware and hardware. Figure 1 illustrates these critical factors
with some examples from each category. In the paper, we
demonstrate our approach by using the 2-D partitioning
IBM implementation of BFS algorithm [15] executed in the
InfiniBand-based cluster (shown by blue boxes in Figure 1).

III. OUR APPROACH

Before presenting the overview of our approach and
explaining the intuition behind it, we provide some details
of Graph500 benchmark and our experimental environment.

Graph500 Benchmark [15]: It was introduced for
measuring a computer’s performance in memory retrieval.
It implements a breadth-first search (BFS) algorithm in
undirected large graphs generated by a scalable, synthetic
data generator based on a Kronecker graph. The graph size
is described by the scale s. Scale s defines the graph with
2s vertices and 16 · 2s edges. For example, graph of scale
27 has 134 Million vertices and 2.1 Billion edges, graph of
scale 28 has 268 Million vertices and 4.2 Billion edges, etc.



The benchmark performs a BFS of graph vertices from a
randomly chosen vertex in the graph. Graph500 benchmark
measures the elapsed times of 64 BFS runs (from randomly
chosen 64 initial source vertices). Benchmark performance
is measured in the achieved throughput of traversed edges
per second (TEPS).

Currently, there are at least six different implementations
of Graph500. In our work, we use the MPI-based IBM
implementation, which utilizes the 2-D (edge-based) data
partitioning algorithm. The released code supports a non-
power-of-2 process count, where the total process count
must be of the form: 2 · (p2) for some positive integer p.
This formula sets strict rules on the configurations that can
be used in our scalability analysis.

Experimental Testbed: In our experiments, we use a
32-node cluster connected via FDR InfiniBand (56 Gbits/s).
Each node is based on HP DL360 Gen9 servers with two
sockets, each with 14 cores, 2 GHz, Xeon E5-2683 v3, 35
MB last level cache size, and 256 GB DRAM per node. The
combined amount of DRAM in the cluster is 8 TB.

For scalability analysis, we are interested in a strong
scaling formulation, where the problem data size is kept
fixed and the number of processors (or nodes) to execute
the program is increased. In order to satisfy the constraints
of the process count of the IBM’s Graph500 code, we use the
following configuration in our study: each node is configured
with 18 MPI processes and 1 thread per process. For this
configuration, we could execute Graph500 benchmark in the
cluster with 4, 9, 16, and 25 nodes, which implies up to
25 ∗ 18 = 450 processes or cores. The maximum graph size
in the experiments is scale of 30, i.e., 1072 Million vertices
and 16.8 Billion edges.

Our Modeling Approach: In our 32-node experimen-
tal cluster, we could collect measurements based on four
possible cluster sizes and different graph dataset scales.
Since each benchmark execution provides 64 BFS runs,
the collected measurements form a representative training
set for designing the regression-based models of application
performance in the experimental (small size) cluster.

First, we derive a base performance model for a given
dataset size. Then, we present a more general model, which
incorporates the graph dataset size as a parameter.

However, the set of collected measurements in the small
32-node cluster does not reflect the performance impact of
the interconnect bandwidth for configurations with larger
numbers of nodes and increased communication volumes.
Therefore, the derived base performance model might be
“idealistic” and “overly optimistic” in predicting the scaling
characteristics of the studied application. To compensate for
a lack (unavailability) of performance measurements related
to the interconnect bandwidth impact in a larger cluster,
we perform an additional set of experiments with the inter-
connect bandwidth throttling tool InterSense [16]. This tool
helps to expose the communication demands of the program
and to analyze the impact of limited interconnect bandwidth

on the application performance. These experiments enable
us to design a refined analytical model that incorporates the
interconnect bandwidth as a parameter to reflect its impact
on application scalability and performance.

IV. THE ENSEMBLE OF PERFORMANCE MODELS

In this section, we introduce the ensemble of analytical
models for evaluating the application scalability and perfor-
mance, and discuss the models’ advantages and trade-offs.

A. Linear Regression Models
In a general case, the Completion Time (CT) of a dis-

tributed memory program can be modeled as follows:
CT = ProcessingT ime+ CommunicationT ime

As the number of processors in the cluster is increased to
p, one would expect that ProcessingTime in this equation
will improve by p times. With the assumption that the data
is evenly distributed over the processes, the processing time
can be approximated as O( 1p ).

To estimate the CommunicationTime of a distributed
memory program as a function of number of processors p
is a more challenging task, and often it relies on algorithm
properties. A theoretical analysis of 2D partitioning imple-
mentation [19] provides the evaluation of its communication
pattern: the number of messages per processor is O(

√
p).

The expected evenly distributed data per process is O(Dp )

or O( 1p ) when data size D is fixed. We combine these
asymptotic analysis (messages and data per process) and
formulate communication time as O( 1√

p ). Here, if we drop
one of the components from the formulation the quality
of the model decreases for obvious reasons. Note that one
might formulate the CT in a different way based on the
different algorithmic properties of the considered graph
problem and its solution.

Since we execute 18 MPI processes per node, we use
p = 18n, where n represents the number of nodes in the
cluster. For presentation simplicity, we omit the additional
constants 18 and

√
18 from the equations below.

Base Linear Regression Model: we can derive the CT
as linearly dependent on 1

p and 1√
p or 1

n and 1√
n

:

CT (p) = Cp
1 ∗

1

p
+ Cp

2 ∗
1
√
p

(1)

CT (n) = Cn
1 ∗

1

n
+ Cn

2 ∗
1√
n

(2)

Figure 2 (a) shows measured CTs of Graph500 benchmark
executed in our cluster for different graph sizes (defined by
scale s) and a number of nodes in the cluster.

Note, that Figure 2 (b) shows the same measurements
with Y-axes in logscale format. If CT (n) would scale as
O( 1n ) (i.e., no communication overhead) then in Figure 2 (b)
one can expect a straight line with a negative slope near
1 [20]. However, it is not the case, and the communication
time represents an essential component of the overall CT of
Graph500 execution.



4 9 16 25
Number of Nodes

0

500

1000

1500

2000

2500

Ti
m

e 
(m

s)

Strong Scaling, ppn/thread= 18/1
Scale=24
Scale=25
Scale=26
Scale=27
Scale=28

(a) Regular linear-scale format.

4 9 16 25
Number of Nodes

101

102

103

104

Ti
m

e 
(m

s)

Strong Scaling, ppn/thread= 18/1
Scale=24
Scale=25
Scale=26
Scale=27
Scale=28

(b) Logscale (Y-axes) format.

Figure 2. The Graph500 CT in a strong scaling scenario.

Eq. 2 provides the problem formulation for CT as linearly
dependent on 1

n and 1√
n

, where Cn1 and Cn2 are coefficients
which need to be derived from the asymptotic analysis. We
aim to find these coefficients via linear regression. Using a
small size cluster with N nodes in total we obtain measured
CTs for BFS code on all possible sub-cluster configurations
with n nodes (n ≤ N ). So, we have data points as a pair,
(time, number of nodes). We use these experimental data
in the set of equations (as shown below) and solve this set
for finding the coefficients Cn1 and Cn2 via linear regression:

CT1(n1) = Cn1 ∗
1

n1
+ Cn2 ∗

1√
n1

CT2(n2) = Cn1 ∗
1

n2
+ Cn2 ∗

1√
n2

... ... ... ...

where CTi is the corresponding CT when ni nodes are used.
A popular method for solving such set of equations is

Non-negative Least Squares Regression, which we use here.
In statistics, this is an approach for modeling the relationship
between a scalar dependent variable (e.g., CT here) and
one or more independent variables (e.g., 1

n and 1√
n

). The
set of coefficients Cn1 and Cn2 is the model that describes
the relationship. The designed base linear regression model
enables the prediction of the CT as a function of the number
of nodes in the cluster.

Generalized Base Linear Regression Model: Now, we
generalize our model to describe CT as a function of data
size as well. Note, the data size, D is interpreted by scale s.
Eq. 2 describes the behavior for different (fixed) scales.
Graph of scale s + 1 has twice the number of vertices
and edges than the graph of scale s. Assuming the data is
evenly distributed over the nodes in the cluster, we derive
the following equation as a generalization of Eq. 2.

CT (n,D) = Cn,D1 ∗ D
n

+ Cn,D2 ∗ D√
n

(3)

This generalized model enables predicting the application
scalability and performance for different cluster sizes and
graph sizes. This model is more general than the base model
described by Eq. 2. However, for a particular dataset size,
Eq. 2 is more precise and accurate. So, there is a trade-off
between precision and generality in these two models.
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B. Estimating The Communication Bandwidth Demands

With an increased number of cluster nodes the commu-
nication volume becomes a dominant component in Eq 1.
Past literature [20] shows that in a strong scaling scenario,
the program performance gets additionally impacted when
system interconnect bandwidth starts affecting the commu-
nication time. We need to assess the increased bandwidth
demands of a communication volume as a function of the
increased cluster size. Unfortunately, there are no exist-
ing tools or common approaches to analyze the utilized
(required) interconnect bandwidth during the execution of
general MPI program. It is a very challenging task due to a
variety of existing MPI collectives and MPI calls that could
involve different sets of nodes and communication styles.

To overcome this challenge, we apply InterSense [16] -
a special interconnect emulator, which can control (throttle)
the interconnect bandwidth to determine how much band-
width the program needs before its completion time becomes
impacted. It enables us to accurately estimate the required
(needed) bandwidth by the program.

Fig. 3(a) shows the outcome of bandwidth throttling
experiments for a graph scale 28. Each line shows the CTs at
different (controlled by InterSense) interconnect bandwidth
percentage. These plots show that there is a non-linear
relation between Graph500 completion times and available
interconnect bandwidth. To get accurate estimates on the
required interconnect bandwidth, we experiment with 2%
interval in the range 10 − 40%. As expected, the CTs are
higher with larger scales and smaller process configurations.

For a particular configuration, we define Completion Time
Increment (CTI) at an available bandwidth (bw) percentage
as the increment in percentage w.r.t the CT when 100%
bandwidth is available.

CTIbw =
CT at bw − CT at 100

CT at 100
(4)

CTI basically reflects how far the CT at an available
bandwidth percentage is from the expected CT at the full
bandwidth (100%) available. Figure 3(a) shows that different
cluster configurations have different CTI when the available
interconnect bandwidth is varied.

Bandwidth Demand (BWCTI,n) is defined as the percent-
age of bandwidth required to achieve the predefined CTI
for a particular number of nodes configuration n.
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Figure 4. (a) CTs with respect to number of nodes and data size
at smaller available bandwidth. (b) Regression model by Eq. 5:
relation between CT as a function of interconnect bandwidth.

Figure 3(b) shows that for a particular CTI, the bandwidth
demands BWCTI,n are increasing with increment in the
number of nodes (we show the results for scale 28).

The analyzed bandwidth demands BWCTI,n for other
graph scales show a similar increasing bandwidth demands
trend. Therefore, we need to model the impact of increasing
communication volumes on the Graph500 performance in a
larger cluster. This can help in estimating the cluster size,
where a communication cost becomes a highly dominant
component, at which point the performance (scalability)
benefits in the further increased cluster would lead to a
diminishing return.
C. Completion Time With Different Available Bandwidth

From the measurements in the previous section, two fol-
lowing facts are evident. First, CT depends on the available
interconnect bandwidth. Second, the communication volume
in an increased size cluster results in a higher bandwidth
demand. Let us look into dependency between CT, data size,
and a number of nodes at a given (fixed) bandwidth. As we
decrease the bandwidth with the bandwidth throttling tool,
the question is whether Eq. 3 is valid for describing CT at
any fixed bandwidth or not.

Figure 4(a) shows the regression results for Graph500
measurements obtained with a decreased interconnect band-
width of 20% (using a bandwidth throttling tool) for the
model defined by Equation 3. The measurements are col-
lected from the experiments with four different cluster sizes
(number of nodes 4, 9, 16, 25) and graph scales 26− 29.

In the experiments we use cross validation. At random,
4/5 of the data points are used for training and the rest for
prediction. Two well studied measures to show quality of
regression are R2 and “mean squared error” (MSE). We
describe these measures in more details in Section V. We get
R2 as 0.976 and 0.972 (close to 1 is better) for bandwidth of
10% and 20% respectively. The corresponding MSEs (close
to 0 is better) are 0.17 and 0.13. Both types of errors reflect
a high quality of regression results. We experiment with
other available bandwidth percentage and get similar results.
From these results, we conclude that at a particular (fixed)
bandwidth the CT model follows Equation 3.

The next question to answer is the following: when data
size and number of nodes are fixed, what is the relationship

between CT and available bandwidth? To answer this ques-
tion we refer to Figure 3(a). CT has a non-linear (rather
exponential) relationship with available bandwidth when
cluster size and data size are fixed. So, we formulate the CT
at an available interconnect bandwidth percentage (bw) in
an exponential form, i.e., O(α

100
bw ). To predict the constant

we use a regression approach and rewrite the equation as
follows:

CT (bw) = Cbw ∗ α 100
bw (5)

In Eq. 5, the coefficient Cbw defines the regression constant
and Exponential Factor (α) defines the exponent component
of the curve. We decide on a good value of α by running a
binary search between 1 and 3 assuming that the exponent
is not very high. The binary search optimizes α based on
the quality of R2 and MSE. To show that this formulation
is of good quality, we perform regression with a cluster
of 25 nodes and graph scale of 29. Figure 4(b) shows the
regression results. We get R2 and MSE as 0.8 and 0.012
respectively (where α is 1.07). These results show a good
prediction of CT in terms of available bandwidth.

Refined Linear Regression Model: Now, we attempt to
formulate CT in terms of available bandwidth percentage
bw, a number of cluster nodes n, and a data size D. We
combine Eq. 2 (or Eq. 3) with Eq. 5 in the following way:

CT (n, bw) = Cn,bw1 ∗ 1

n
+ Cn,bw2 ∗ α

100
bw√
n

(6)

CT (n, bw,D) = Cn,bw,D1 ∗ D
n

+ Cn,bw,D2 ∗ D ∗ α
100
bw√

n
(7)

Eq. 7 is a generalized version of Eq. 6 as it describes CT as
a function of data size as well. The equations Eq. 6 and 7
describe the CTs as a function of cluster size and available
interconnect bandwidth. Thus they represent a complete
model of Graph500 CT (or application scalability) in terms
of important system variables.

We summarize the derived regression and prediction
models and their parameters in Table I. We describe the
input variables, the predicted component, the factors which
are fixed and the structure of the training data points for
every model. Note, α should be tuned to reflect the desired
performance impact for the models which take it as an input.

Models Input Variable Fixed Predict Training Data Point
Eq.2 n bw,D CT (CT, n)
Eq.3 n,D bw CT (CT, n,D)
Eq.5 bw, α n,D CT (CT, bw)
Eq.6 n, bw, α D CT (CT, n, bw)
Eq.7 n,D, bw, α − CT (CT, n,D, bw)

Table I
SUMMARY OF DIFFERENT REGRESSION MODELS.

V. EVALUATION
In this section, we evaluate accuracy of regression for

the ensemble of analytical models introduced in previous
Section IV. Two of the important measures for evaluating the
quality of regression are the following: “mean squared error”
(MSE) and R2. Then we analyze the application scalability
and performance projections obtained using these models.
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Figure 5. Regression results for (a) Eq. 2, where the CT model
includes the number of nodes as a parameter (for a fixed graph
scale); and (b) Eq. 3, where the CT model includes the number of
nodes and a graph scale as parameters.

A. Accuracy of the Linear Regression Models

The Base and Generalized Linear Regression Models:
For a fixed problem data size in Graph500, we perform
experiments with different number of nodes in our 32-
node cluster (using the same configuration per node), collect
measurement data, and then solve Eq. 2 with linear regres-
sion for finding coefficients Cn1 and Cn2 . The solution is
based on collected measurements of approximately 250 data
points. One run of Graph500 for one particular graph scale
produces 64 BFS measurements, and it helps in creating a
representative set of measurements.

Table II shows all the coefficients and the errors for these
experiments and the derived base linear regression model
defined by Equation 2.

Data Scale Cn
1 Cn

2 R2 MSE
26 30.4 0.98 0.94 0.002
27 68.66 1.92 0.95 0.008
28 138.59 4.004 0.97 0.03
29 326.12 9.598 0.95 0.399
30 629.38 29.03 0.96 1.735

Table II
ACCURACY OF REGRESSION FOR EQUATION 2.

The errors reflect a high quality of the regression results.
The MSE measure highly depends on the numerical values
of the results. As larger size graphs result in higher comple-
tion times, the deviation is larger. So, MSE becomes larger
for higher graph scales. There are interesting observations
about the computed coefficients Cn1 and Cn2 . We need to
remind that in Eq. 2, there are two parts forming an overall
Graph500 CT: a graph processing time at each cluster node
(weighted by a coefficient Cn1 ) and a communication time
(weighted by a coefficient Cn2 ).

The computed coefficient Cn1 is greater than Cn2 in all
cases. This result shows that the processing time dominates
the benchmark execution time (i.e., CT) in a small/medium
cluster. At the same time, in a larger size cluster, the
communication time starts to dominate the CT because n
grows faster than

√
n in the denominator of Eq. 2.

The ratio (Cn1 /Cn2 ) decreases as the data size increases
from scale 27 to scale 30. This explains that communication
time component becomes more significant with a larger size.

Figure 5 (a) shows the regression results for problem
scale 30 (scales 26 − 29 are similar). Each point (x, y) in
these figures presents a measured value on X-axes and the
predicted value on Y-axes. As we can see, the designed base
linear regression model fits well the collected measurements.

Figure 5 (b) shows the regression results for Eq. 3. This
equation describes the generalized base linear regression
model which can predict the Graph500 CT as a function
of the cluster size and the graph size. This single model is
derived using measurements from the experiments with dif-
ferent graph scales. The collected measurement set consists
of approximately 1250 data points.

In these experiments, we use 2s−25 as a base for D,
where s denotes the graph scale. Note, that graph with
scale s + 1 is two times larger (in the number of vertices
and edges) than the graph of scale s. We use a minimum
scale of 26 in the experiments. So, 25 is assumed to be
the base and the equations will have normalized constants.
The computed coefficients Cn,D1 and Cn,D2 are 19.65 and
0.82. The corresponding R2 and MSE are 0.98 and 0.406
respectively. These low errors indicate the good prediction
capability of the model.

In conclusion, the model defined by Eq. 3 is a generalized
version of the base linear regression model defined by
Eq. 2. Note, the coefficients for these two models are quite
different. Eq. 3 is more general as it can describe the
Graph500 CTs for different graph scales, whereas Eq. 2 is
specific to a particular graph size. On the other hand, MSE
(0.406) for Eq. 3 is higher than Eq. 2 for scale 26, 27, 28
and 29. Apparently, generalization of the model gives lesser
accuracy and inclusion of measurements for graph scale 30
in training and testing of the model (Eq. 3) makes a higher
contribution in MSE.
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Figure 6. Regression results for (a) Eq. 6: the CT model includes
the number of nodes and interconnect bandwidth as parameters,
(b) Eq. 7: the CT model also includes the graph scale.

The Refined Regression Model: The refined regression
model is derived with Eq. 6, where the CT is defined as a
function of the cluster size and interconnect bandwidth, but
it has a fixed graph size (scale).

This model is derived using Graph500 benchmark ex-
periments with a fixed problem data size, different number
of nodes (in our 32-node cluster), and different available
bandwidth percentages enforced by the bandwidth throttling
tool InterSense. To get a representative number of data



Data Scale Cn,bw
1 Cn,bw

2 α R2 MSE
26 26.15 1.412 1.13 0.943 0.0025
27 59.49 2.845 1.12 0.952 0.01
28 118.026 5.968 1.11 0.969 0.0266
29 300.058 11.711 1.11 0.955 0.263

Table III
ACCURACY OF REGRESSION FOR EQUATION 6.

Data Scale Cn,bw,D
1 Cn,bw,D

2 α R2 MSE
26− 28 16.77 0.561 1.14 0.980 0.014
26− 29 15.25 0.985 1.08 0.966 0.119

Table IV
ACCURACY OF REGRESSION FOR EQUATION 7.

points, we performed experiments from 10% to 50% of
available bandwidth with a 2% interval.

We collected approximately 5200 measurement data
points, and then solved Eq. 6 with linear regression for
finding coefficients Cn,bw1 , and Cn,bw2 . The value of α is
decided with binary search between 1 and 3 (assuming that
the exponential component is a low constant, the low value is
experimentally verified) based on optimizing the mentioned
two types of errors. Figure 6(a) summarizes the regres-
sion results for the Refined Regression Model described by
Eq. 6. Table III shows all the results for the coefficients
(Cn,bw1 , Cn,bw2 ), the variable α and the regression errors.

The Generalized Refined Regression Model: The gen-
eralized refined regression model is defined by Eq. 7, where
the CT is defined as a function of the cluster size, the
interconnect bandwidth, and the graph scale.

This model is designed using Graph500 benchmark exper-
iments with different graph scales, different number of nodes
(in our 32-node cluster), and different available bandwidth
percentages (10% to 50% with 2% increment interval)
enforced by the bandwidth throttling tool InterSense. In
these experiments, we use 2s−25 for D, where s denotes
the graph scale. We have two sets of experiments including
different ranges of graph data sizes. The first set (shown
in Fig. 6(b)) includes graph scales from 26 to 28 and use
approximately 15, 000 data points. The second set (plots
omitted) includes graph scales from 26 to 29 and use 20, 000
data points approximately.

We solve Eq. 7 with linear regression for finding coeffi-
cients Cn,bw,D1 , and Cn,bw,D2 . The value of α is optimized
based on two types of errors (MSE and R2). Table IV shows
all the results for the coefficients (Cn,bw,D1 , Cn,bw,D2 ), the
variable α and the mentioned errors. The errors show that
the proposed model produces high quality in both settings.

B. Performance and Scalability Projections

Projections with the Refined Base Regression Model:
Ideally, the shape of CT for Graph500 benchmark (imple-
mented using 2-D partitioning algorithm) is defined by the
base linear regression model described by Eq. 2. However,
our experiments with bandwidth throttling tool and the
related analysis show, that the communication time increases
due to higher communication volumes and increased inter-
connect bandwidth demands in a larger cluster. Therefore,
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Figure 7. Performance projections: (a) GTEPS (GigaTEPS), and
(b) CT (logscale) using the base linear regression model (Eq. 2)
versus the refined linear regression model (Eq. 6).

CT will be higher (worse) than anticipated by the base model
and Eq. 2, and it will be more accurately described by the
refined regression model and Eq. 6. Note, that the other per-
formance metric of interest is Traversed Edges Per Second
(TEPS). The TEPS metric is inverse to the CT, i.e., higher
values are better. This metric is to measure performance of
different implementations for traversal algorithms.

Now, we use the model coefficients derived by regression
and experiments (Table II and Table III respectively), and
compare the Graph500 results projected by the base linear
regression model and the refined regression model. Note,
that the models’ coefficients are different for different graph
scales. Using these models, we can project CTs and TEPS
of Graph500 for different graph scales over a large number
of nodes in the cluster.

Fig. 7 shows the results for scale 28 (scale 26, 27 and
29 are similar). In Fig. 7, the line “Ideal” stands for
model defined by Eq. 2. The other lines are derived using
Eq. 6 for different interconnect bandwidth. The Graph500
performance metrics GTEPS (i.e., GigaTEPS) and CT in the
“Ideal” model are overly optimistic and significantly over-
estimate the achievable application performance. The refined
regression model, which incorporates the interconnect band-
width into account, provides a more accurate and realistic
projection of Graph500 performance in a larger size cluster.
We use logscale at Y-axes for showing CT (Fig. 7 (b))
in order to better reflect performance projection differences
and to stress the impact of interconnect bandwidth on the
benchmark performance in a larger size cluster.

One additional interesting observation in Figure 7 is the
following. If we enlarge the initial part of this figure, then
we can see that CTs defined by Eq. 2 (“Ideal”) and Eq. 6
with bandwidth of 50% and 100% are practically the same in
the “small” cluster range (i.e., less than 32 nodes). For this
number of nodes the communication volume is small and is
not impacted by the interconnect bandwidth. The deviation
between the lines gets more significant with the larger num-
ber of nodes, when the increased communication volume
gets impacted by the available interconnect bandwidth.

Projection with the Refined Generalized Regression
Model: Following similar arguments and logic as above
(in the case of the refined base model), we compare the
performance projections defined by Eq. 3 and Eq. 7 as shown
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Figure 8. Projections: (a) GTEPS and (b) CT (logscale) using the
generalized base model defined by Eq. 3 vs refined generalized
model defined by Eq. 7 for graph scale 28.

in Figure 8. We produce these projections for scale 28.
In Figure 8, the line “Ideal” stands for the generalized

base model defined by Eq. 3. The other lines are derived
using the refined generalized model defined by Eq. 7 for
different interconnect bandwidth. As expected, the Graph500
performance metrics (TEPS and CT) produced by the “Ideal”
model (Eq. 3) are overly optimistic and the performance
metrics computed with the refined model (which takes
the interconnect bandwidth into account) provides a more
accurate and realistic projection.

It is worth noting that the performance projections defined
by Eq. 6 and Eq. 7 for the same size (scale 28) are very close
to each other: with differences less than 15% as one can see
by comparing Figures 7 (a)-(b) and Figures 8 (a)-(b), which
justifies our expectations of the performance outcomes.

The main benefit of the designed refined generalized
model is that it can project the application performance
for different graph sizes (even those for which we did not
have training data). However, some “back of the envelope”
calculations should be performed, e.g., making sure that the
considered larger graph fits in memory of the cluster, etc.

With the insights from these experiments, we project
(Table V) the application performance for larger cluster
sizes, and in particular, the size (number of nodes), where
the communication cost becomes the dominant component
and leads to a diminishing return in the scalability equation.

Eq. 2 (Ideal) Eq. 6 (Refined) Eq. 3 (Gen. Ideal) Eq. 7 (Gen. Ref.)
bw (100%) bw (100%)

81 25 81 16

Table V
SUMMARIZING THE MODELS SHOWING WHEN (THE NUMBER OF NODES) THE

COMMUNICATION TIME COMPONENT BECOMES DOMINANT FOR SCALE 28.

VI. RELATED WORK

A large group of tools is based on the program “pos-
mortem” analysis, i.e., these tools record application run-
time performance behavior (variety of metrics, system calls,
etc.) and analyze the collected measurements after the pro-
gram terminates, such as Scalasca [7], TAU [21], HPC-
Toolkit [8], Extrae [10], Paraver [11], just to name a few.
Some tools like Scalasca and Tau can interoperate and
redirect calls to each other. They perform in-depth studies
of concurrent behavior using event tracing, and then pro-
vide scalability bottleneck analysis by identifying potentially

inefficient pieces of the program. However, most of these
frameworks and tools do not support predictive modeling.
The collected traces could be fed to different simulators,
such as Dimemas [12] or xSim [14], where additional “what-
if” and scalability analysis can be performed. There is a large
body of work on analytic models of targeted applications.
However, most of them involve detailed application profiling
and understanding semantics of the code. For example,
in [9], the authors generate an empirical performance model
automatically. The goal of this model to identify “perfor-
mance bugs” and assist programmers in optimizing their
programs.

The work most closely related to ours utilizes various
regression-based techniques to predict application perfor-
mance [22], [23], [24]. Neural networks [23] and piece-wise
polynomial regression [24] are applied to predict the pro-
gram execution time using a “black-box” approach. Barnes
et al. [22] identify techniques to separate computation and
communication. The authors (similar to our work) observe
that program computation and communication times scale
differently with processor count changes. The approach aims
to estimate the communication delays more accurately, while
in our work we analyze communication bandwidth impact
on the communication time. To automate the analytical
model derivation, we introduce a novel approach based on
a bandwidth-throttling tool [16], [25] which enables us to
analyze and incorporate into the model the necessary addi-
tional information about application performance sensitivity
to bandwidth limitations under different processor counts.

VII. CONCLUSION
In this work, we discuss a new approach for assessing the

scalability and performance of large graph analytics by using
Graph500 benchmark as a motivating example. We show a
set of critical factors that needs to be taken into account for
scalability analysis of a distributed memory program. Since
the scalability of many distributed programs is limited by
their communication volume and the available interconnect
bandwidth, we show how one can analyze the performance
impact and estimate the required interconnect bandwidth in
a larger cluster from the experiments performed in a small
cluster with an “interconnect bandwidth throttling” tool.
We create the ensemble of predictive models for scalability
and performance analysis of a given application, and can
project the program performance in a large size cluster with
hundreds of nodes.
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