
Towards Scalable Network Delay Minimization
Sourav Medya

University of California, Santa Barbara
medya@cs.ucsb.edu

Petko Bogdanov
University at Albany - SUNY

pbogdanov@albany.edu

Ambuj Singh
University of California, Santa Barbara

ambuj@cs.ucsb.edu

Abstract—Reduction of end-to-end network delays is an opti-
mization task with applications in multiple domains. Low delays
enable improved information flow in social networks, quick
spread of ideas in collaboration networks, low travel times for
vehicles on road networks and increased rate of packets in
communication networks. Delay reduction can be achieved by
both improving the propagation capabilities of individual nodes
and adding additional edges in the network. One of the main
challenges in such design problems is that the effects of local
changes are not independent, and as a consequence, there is
a combinatorial search space of possible improvements. Thus,
minimizing the cumulative propagation delay requires novel
scalable and data-driven approaches.

In this paper, we consider the problem of network delay
minimization via node upgrades. Although the problem is NP-
hard, we show that probabilistic approximation for a restricted
version can be obtained. We design scalable and high-quality
techniques for the general setting based on sampling that are
targeted to different models of delay distribution. Our methods
scale almost linearly with the graph size and consistently outper-
form competitors in quality.

I. INTRODUCTION

Given a communication network, how can one minimize
the end-to-end communication delay by upgrading networking
devices? How to minimize the travel time on an airline
network by increasing the personnel and infrastructure at key
airports? How to recruit users who can quickly re-post updates
enabling fast global propagation of information of interest in
a social network? There is a common network design problem
underlying all the above application scenarios: for a large
network with associated node delays, identify a set of nodes
(within budget) whose delay reduction will minimize the path
delays between any pair of nodes.

Network design problems, including planning, implement-
ing and augmenting networks for desirable properties, have a
wide range of applications in communication, transportation
and information networks as well as VLSI design [1], [2], [3],
[4], [5], [6]. Challenges in this area are posed by the rapidly
growing sizes of real-world networks, leading to the need
for scalable, data-driven approaches. In particular, network
design problems involve local changes to an existing large
network such as adding/modifying links or nodes as a means
to improve its global properties [7], [8], [9], [10], [3], [5].
In this paper we address a problem from the above category,
namely, minimizing the overall end-to-end network delay.

The end-to-end delay in a network affects propagation
speeds and is a function of the network link connectivity
and the throughput capabilities of individual nodes. The

Fig. 1: Airports with maximum impact on the overall network delay
in the American Airlines network as discovered by our methods.
If airline-caused delays are removed in these airports, the overall
network delay decreases by 96% and 55% when the accumulated
airline-caused flight delays (Total) and Average (over number of
flights) airport flight delays are considered respectively.

majority of previous work focuses on delay minimization
by augmenting edges [11], [10], [3], [6]. Less attention has
been devoted to the complementary, but algorithmically non-
equivalent setting in which the propagation capabilities of
nodes are “upgraded” under budget [9]. In this paper, we
consider the node-version of the delay minimization problem.

Depending on the domain, low end-to-end delay enables
improved information flow in social and collaboration net-
works [12], reduced travel time for airline and road net-
works [13] and increased throughput for communication net-
works [9]. Consider, for example, the air transportation net-
work of a major US carrier presented in Fig. 1, where edges
correspond to flights offered by the carrier between endpoint
cities. Based on historical information on past flights one can
associate airports with airline-caused delays. An important
question for an airline is then how to minimize overall
delays by improving the number of personnel and available
infrastructure (e.g. luggage handling) in problematic airports
that affect multiple routes. In Fig. 1 we show the airports
with highest delay-reduction potential, determined based on
both historical delays and their position in the network. When
the cumulative historical delays are considered (Total), hub
airports like Chicago, Dallas and Miami constitute the best
solution, while “fringe” airports make it to the list when the
Average delay is considered1.

Another important application comes from social networks
where user behavior—activity and interest in a specific topic—
determines the node delay for information propagation. In this
domain, the objective is to speed up the global propagation of
information by decreasing individual response time [15]. A

1Extended discussion of the findings in this data is available in the
Experimental section and in the extended version of this paper [14].

social media strategist of an election campaign, for example,
would be interested in recruiting social network users who
can re-post relevant campaign updates immediately, enabling
faster propagation of relevant campaign information. Both the
position in the network and the current delay in propagating
information should be taken into account in selecting recruits.
While information and influence propagation are tradition-
ally modelled as a diffusion process (i.e., using all possible
paths) [16], multiple recent approaches (including the current
work) focus on the most probable (shortest) paths in order to
allow scalable solutions [17], [18].

Given a network with node delays, our goal is to identify a
set of nodes whose delay reduction will minimize the sum
of shortest path delays between pairs of nodes. We term
this problem the Delay Minimization Problem (DMP), and
demonstrate that it is NP-hard in a general network, even when
the node delays are equal. Intuitively, the challenge stems from
the fact that the global effect of a single node upgrade is
dependent on the remaining nodes in the solution.

Our contributions in this paper include:
• We consider the node delay minimization problem and
show that it is NP-hard even for uniform delays. We develop
an approximation guarantee using VC dimension theory and
analyze the complexity for a restricted problem formulation.
• We propose high-quality sampling-based algorithms that
scale almost linearly with the network size. In million-node
networks we obtain high-quality solutions within one hour,
while non-trivial alternatives are infeasible.

II. PROBLEM DEFINITION

A network is modeled as an undirected graph G(V,E, L),
where V and E are sets of vertices and edges respectively
and L is a function L : V → R≥0 over V that specifies
the delay/latency l(v) of individual nodes. The delay (or
length) of a path is defined as the cumulative delay of the
vertices along the path, excluding that of the destination. More
formally, if Ps,t = (vs, v1, v2, ..., vr, vt) is a path from vertex
vs to vt, its length is defined as l(Ps,t) = l(vs) + Σri=1l(vi).
Delay at the destination node in a path is excluded since our
targeted applications consider information/traffic flow and the
destination node does not add any delay. The shortest path
between vertices s and t is that of minimum length (delay)
among all such paths and its length is denoted as d(s, t). By
convention, d(s, s) = 0 for all s ∈ V . We define the all pair
shortest path delays (SPD) as the sum of shortest path lengths
between all pairs of vertices, i.e., SPD(G) = Σs,t∈V d(s, t).

The DMP asks for a subset of vertices whose upgrade (delay
reduction) minimizes the overall SPD. In the process, the delay
of a fixed (small) number of vertices T ⊂ V is reduced to 02.
We call this subset T a Target Set (TS) and its size |T | = k,
the budget. The upgrade of the TS, T results in reduction
of the lengths of shortest paths in the network. We denote
the resulting (effective) shortest path length between s and t

2Reduction by units of delay can be approached with simple changes in
our algorithms.

given the upgrade of T as d(s, t|T). Our goal is to find a T
that minimizes Σs,t∈V d(s, t|T).

Definition 1. Delay Minimization Problem (DMP): Given
a network G = (V,E,L) and a budget k, find a target set
T ⊂ V , such that |T | = k and Σs,t∈V d(s, t|T) is minimized.

The proofs of all the theorems (and lemmas) in the paper
are presented in the extended version [14].

Complexity: We consider two different models for the
distribution of the delays in a network and characterize the
problem complexity. Under the general model, node delays
can be arbitrary non-negative values, while the uniform model
assumes equal delays (for simplicity, delay of 1) on all nodes.
We show that DMP is NP-hard in the special case of the
uniform model, and hence it is in the same complexity class
as the general model. To show this hardness result we reduce
the Set Cover problem to our problem. However, for restricted
network structures such as trees, finding an optimal TS takes
polynomial time.

Theorem 1. DMP is NP-hard even if the delay of all vertices
is 1, i.e. under the uniform model (or general model).

Theorem 1 establishes that the problem is NP-hard. How-
ever, finding an optimal TS in trees takes polynomial time
under the general model. Shortest paths between any pair of
nodes in trees are unique and, hence, they do not change after
upgrading the delay of any vertex. Intuitively, this fact about
trees helps a simple greedy algorithm (formally defined as
Algorithm 1) to produce an optimal TS of size k.

Approximability: Since DMP is NP-hard, we explore the
existence of approximations with guarantees. The underlying
objective function in DMP is monotone as the SPD reduces
after each upgrade. However, it does not have the submodular
property. We next show an approximation for “long” paths
of delay εn or higher, where |V | = n and 0 < ε < 1.
Our optimization objective for “long” paths is SPDε(G) =
Σs,t∈V,d(s,t)≥εnd(s, t). Let Rεopt(k) represent the reduction
in SPDε by the optimal TS of size k and Rεrand(kb), the
reduction due to kb randomly chosen vertices. The relationship
between k, b and ε is captured in the following theorem. The
details are discussed in the extended version of this paper [14].

Theorem 2. Given a confidence parameter δ,
Rεopt(k)

Rεrand(kb) ≤ k

with probability δ, where kb = (2
ε log

2
ε + 1

ε log
1
δ).

III. ALGORITHMS

We present a greedy approach for DMP that consecutively
selects the vertex that minimizes the SPD in each iteration.
Such an approach is optimal for k = 1. It also produces
optimal results for networks with simple structures (Lemma 1)
and works well in practice for general instances. It is, however,
expensive as it requires re-computation of all shortest paths
at every iteration. To make the approach scalable, we employ
sampling techniques and introduce probabilistic approximation
algorithms for different delay models.

Algorithm 1: Greedy (GR)
Require: Network G = (V,E, L), Vertex delays l(v), Budget k
Ensure: A subset of k nodes
1: Initialize Matrix A with 0 and T as Φ
2: Compute all pair shortest paths
3: Store d(s, t) in Matrix position As,t
4: while |T | ≤ k do
5: for v′ ∈ V do
6: Compute RS(v′|T) when l(v′) > 0
7: end for
8: v ← maxv′∈V {RS(v′|T)} and then set l(v) as 0
9: Update d(s, t) for s, t ∈ V as l(v) becomes 0

10: T ← T ∪ {v}
11: end while
12: Return T

A. Greedy Construction of the Target Set

While finding the optimal TS is NP-hard, in the case of
only one target vertex, an exact solution can be obtained by
computing the reduction of all individual nodes in polynomial
time. Therefore a greedy algorithm selecting a vertex that
optimally reduces SPD at each step is a natural approach
to solve DMP. Before presenting the algorithm, we introduce
some additional notation. We define the delay Reduction (RS)
by a target set S as: RS(S) = Σs,t∈V d(s, t)−Σs,t∈V d(s, t|S).

We further define RS by a vertex v, given that a subset S
has already been included in TS (assuming v /∈ S) as:

RS(v|S) = Σs,t∈V d(s, t|S)− Σs,t∈V d(s, t|S ∪ {v}).
The reduction of adding vertex v to a set S in TS can be

expressed as RS(S ∪ {v}) = RS(v|S) + RS(S). The RS
of a vertex depends on: (i) its delay and (ii) the number
of unique shortest paths passing through it after removing
its delay. Maximizing RS(v|S) takes both these properties
into account. Next, we present an algorithm which iteratively
selects the vertex of maximum reduction RS(v|S).

Lemma 1. Greedy (Alg. 1) produces an optimal TS in re-
stricted structures such as trees, cliques and complete bipartite
graphs under the general model.

Complexity: GR runs in time O(kn3) which is dominated
by the computation of shortest paths in steps 2, 6 and 9.
Finding the next “best” vertex by evaluating the reduction
of all possible vertices requires O(n3) time, where n is the
number of vertices. Moreover, updating the distances after a
vertex is included in TS takes O(n2). The space complexity
of computing all pairs shortest paths is O(n2). The high
complexity of GR introduces a scalability challenge, rendering
the algorithm infeasible for large real-world networks. Hence,
we develop sampling-based versions of GR for large graphs
and provide approximation guarantees w.r.t. GR.

B. General Model: Approximate Target Set

The main drawback of GR is that it is not scalable. We
address its computational and storage bottlenecks using a
sampling scheme. The main idea behind our approach is as
follows: instead of computing and optimizing the sum of
distances between all pairs of vertices, we can estimate it based
on a small number of sampled vertex pairs.

In what follows, we bound the difference in quality of
our sampling solution GS (presented in Alg. 2) and Greedy
(Alg. 1). In this case, the absolute value of the reduction
RS is not a suitable metric as the initial sum of shortest
path distances (SPD) varies across input graphs. Hence, we
choose Relative Reduction (RR) as a quality metric where we
normalize RS by the initial SPD. We define the measure RR
of a set S as RR(S) = RS(S)

SPD . The RR of a vertex v given a
set S comprising the current TS is defined in a similar manner,
RR(v|S) = RS(v|S)

SPD .
As part of GS, we sample uniformly with replacement a set

of ordered vertex pairs P of size p (|P | = p) from the set of all
vertex pairs U = {(s, t)|s ∈ V, t ∈ V, s 6= t}, |U | = n(n− 1).
The samples can be viewed as random variables associated
with the selection of a pair of vertices and the distance
between a sampled pair is the value of the random variable.
When uniform random sampling is used, each pair is chosen
with probability 1

n(n−1) and the choice of one sample does
not affect that of any other sample. Thus, the samples are
independent and identically distributed random variables.

We first show that the estimate of SPD based on samples is
unbiased. Namely, for any target set of nodes S, the average
of the sum of distances between pairs in P is an unbiased
estimate of that between all pairs of vertices, the latter being
defined as µ =

Σs,t∈V d(s,t|S)
n(n−1) . The vertex whose inclusion in

TS optimizes this estimate is chosen in each step of GS.

Lemma 2. Given a sample of node pairs P, |P | = p, the
expected average distance among the sampled pairs is an
unbiased estimate of the average of all-pair distances (µ):

E[1
p

p∑
i=1

Xi] = µ where Xi represents the distance between

the i-th pair of vertices in the sample.

We employ Hoeffding’s inequality [19] to bound the error
produced by our sampling method in a single greedy step. The
requirement for the applicability of Hoeffiding’s inequality is
that the summed variables are chosen independently from the
same distribution, which is the case in our setting. Similar
independent node pair sampling analysis using Hoeffding’s
inequality has been previously employed by Yoshida et al. [20]
to estimate the group betweenness of vertices. In what follows,
we demonstrate that the estimate has low error with high prob-
ability requiring only small number of samples. Furthermore,
we show the same quality guarantee with even smaller number
of samples in small-world networks.

Theorem 3. Given a target set S and a sample P of size
p, if vg and va are the next vertices chosen by GR and GS
respectively, the difference in delay reduction due to these
choices is bounded as follows:

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2
,

where p is O(c
2logn
ε2), c = diam

lmin
, diam and lmin are the

diameter and minimum delay respectively.

As mentioned before, the proof is in the extended ver-

Algorithm 2: Greedy with Sampling (GS)
Require: Network G = (V,E, L), Approximation error ε, Sampling factor c,

Budget k
Ensure: A subset of k nodes, Target Set
1: Choose p = O(clogn/ε2) pairs of vertices in P
2: T ← Φ
3: while |T | ≤ k do
4: for (s, t) ∈ P do
5: Compute d(s, t′|T) and s.target[t′]← d(s, t′|T) ∀t′ ∈ V
6: Compute d(s′, t|T) and t.source[s′]← d(s′, t|T) ∀s′ ∈ V
7: end for
8: for v′ ∈ V do
9: if l(v′) > 0 then

10: Rv′ ← Σ(s,t)∈P d(s, t|T)− Σ(s,t)∈P d(s, t|T ∪ {v′})
11: end if
12: end for
13: v ← maxv′∈V {Rv′}
14: l(v)← 0 and T ← T ∪ {v}
15: end while
16: Return T

sion [14]. Note that, in the theorem, we assume lmin > 0
without loss of generality. If lmin = 0, one can delete any node
of zero delay, add all possible edges among its neighbours and
consider the resulting network as an input. For small-world
networks (where the diameter is ≤ lmaxlogn), a property
exhibited in many domains, we show that the number of
samples needed to obtain the same quality is much smaller.

Corollary 4. Given a small-world network in which diam ≤
lmaxlogn, the error of GS using p = O(log

3n
ε2) samples can

be bounded as:
Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2
GS (Alg. 2) takes as input a network G, a target approx-

imation error ε, a sampling factor c and a budget k. The
algorithm outputs a target set of vertices constructed based
on optimizing the sum of the distances between each of the
sampled pair paths. The approximation error, ε, defines the
difference between the approximate and the optimal reduction
at each step. The number of samples p depends on the number
of vertices n, the error ε, and the sampling factor c. In theory,
c should be chosen as shown in the theorem based on the input
graph G. But in practice, we use a small constant c, requiring
small number of samples (see Sec. IV). The running time of
GS is O(kpnlogn) and is dominated by the computation of
shortest paths (for details of the algorithm and its complexity
see the extended version [14]).

C. Uniform Model: Approximate Target Set

In some applications, instances of our design problem may
feature uniform (equal) or close-to-uniform initial delays. For
example, many routing devices in a computer network might
have similar hardware configuration and hence feature com-
parable delays. Similarly, intersections with the same number
of lanes within a road network allow for similar rate of cars
to propagate during congestion periods. Such homogeneous
instances offer more structure to the design problem and allow
for a better (faster and higher-quality) sampling scheme than
our general-case algorithm GS. Hence, we develop and analyze
a superior sampling based-method, called PCS (Path Count
with Sampling), targeted to the uniform model.

We relate the delay reduction due to a vertex to the number
of shortest paths passing through it. Let ζv(S) (or ζv , we are
omitting S for simplicity) denote the number of shortest paths
passing through a vertex v assuming that S is the target set.

Theorem 5. In the uniform model, for a given set S and
v /∈ S, RS(v|S) = ζv + (n− 1).

With the above result, a greedy algorithm only needs to
know the values of ζ for each vertex. The main bottleneck of
computing ζ involves shortest path computation between all
pairs of vertices. We address this complexity by a different
sampling scheme. We estimate ζ for a vertex based on the
shortest paths among p pairs of vertices sampled independently
with replacement. Let Xv be a random variable denoting the
number of times v belongs to SPs,t for all sampled pairs (s, t),
where SPs,t (s, t /∈ SPs,t) denotes the set of vertices on the
shortest path(s) between s and t. The expected value of the
random variable is computed as follows:

Lemma 3. For any vertex v, E[Xv] = p
n(n−1)ζ

v.

The lemma holds due to the additive property of expectation
and the fact that the pairs are sampled independently. Next,
we show that the difference in quality of GR and PCS is small
with high probability in a single greedy step.

Theorem 6. Given a sample P, |P | = p = O(lognε2), if vg and
va are the vertices chosen by GR and PCS respectively, then

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2
.

Thm. 6 shows that the error of PCS w.r.t. GR is bounded
by ε with probability 1 − 1

n2 at a single step. The number
of samples needed by PCS is O(log(n)

ε); this is a factor of
O(log2n) less than the number of samples needed in GS for
small-world networks and a factor of O(diam

2

l2min
) less than that

in general networks.
Algorithm PCS computes TS based on the estimates of

number of shortest paths through each vertex. The overall
complexity is O(kp(m + n)). Details of the algorithm and
its running time are available in the extended version [14].

IV. EXPERIMENTAL RESULTS
A. Datasets

The real-world datasets3 for evaluation are listed in Table I.
The air transportation (http://www.rita.dot.gov) data consist of
airline flight networks with delays at airports set according to
historical flight delays due to circumstances within the airline’s
control (e.g. maintenance or crew problems, aircraft cleaning,
baggage loading, fueling, etc.). We consider average and total
delay of flights originating from an airport in the period 01/13-
09/15. Our Traffic data is from the highway network of Los
Angeles, CA [21], where the delay at an intersection is defined
as the scaled inverse of the observed speed at a given point
in time (1500 ∗ 1/speed). According to this definition the
delay values range between 15 and 80 (similar to that of
the original speeds). For the Twitter dataset, we disregard the

3The code is available: http://www.cs.ucsb.edu/∼dbl/software.php

http://www.rita.dot.gov
http://www.cs.ucsb.edu/~dbl/software.php

direction of edges. Node delays in this network represent the
average inter-arrival time between posts on a given topic. We
experiment with different topics described in [22]. For DBLP,
we assign delays randomly, with values uniformly distributed
in multiples of ten between 10 to 100. Our goal is to evaluate
the scalability of our algorithms on a large real-world network
structure.

name value |V | |E|
Traffic inverse speed 2K 6K

Twitter-Celeb posting delay 28K 240K
Twitter-Politics posting delay 100K 7.4M
Twitter-Science posting delay 100K 3.3M

DBLP random 1.1M 5M

TABLE I: Dataset description and statistics.

B. Comparison to baselines

We evaluate the performance of our algorithms in compar-
ison to alternatives. Some baselines select TS vertices based
on local properties: degree (Deg-Cen) or delay (High-Delay);
while others—based on the product of global path centrality
and delay (Path-Cen and It-Path-Cen [9]). It-Path-Cen updates
the number of shortest paths through a vertex after each
selection of a target vertex.

Fig. 3a presents the RR of competing techniques on the
Traffic network with uniform delays using 50log(n) samples
for PCS. On this relatively small network, PCS produces at
least 6% better RR than the best alternative Path-Cen. Note,
that in this setting simple alternatives such as Random and
Deg-Cen, although fast, have unacceptably low quality.

Next, we associate the delays (general model) at road inter-
sections (nodes) measured at different times, and compare with
competing techniques. As the results on different snapshots
are similar, we show a representative figure on quality (fig.
3b). Using 10log(n) samples, GS produces higher RR than
both Path-Cen and It-Path-Cen, with up to 1 and 2 orders
of magnitude running time improvement respectively (plots
omitted due to space constraint). Unlike It-path-Cen, GS does
not target nodes only based on the number of shortest paths
through them, but estimates the improvement of nodes given
those already in the target set and achieves a better quality.

In larger graphs, computing the exact quality (reduction of
SPD) has high computational cost as it requires computing all-
pair shortest paths. Hence, in order to evaluate the competing
techniques, we estimate RR based on a representative sample
of pairwise shortest path lengths. We randomly sample 1000
pairs 10 times and average the quality results. We evaluate the
competing techniques on DBLP and the Twitter datasets.

First, we evaluate the running time in comparison to the
best-quality competing techniques in Tab. II. As expected
based on their theoretical complexity, Path-Cen and It-Path-
Cen [9] do not scale well for large datasets. Our algorithms
complete in at most 36 min, while the alternatives take close
to or more than 5h on the same input (DNF stands for “does
not finish in 5 hours”). Twitter-50K in this experiment is a
subgraph of the Twitter-Politics network involving 50K nodes,
while in the uniform-delay setting we evaluate PCS on a
subgraph of DBLP of 100K nodes (DBLP-100K).

 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50

R
R

 (
%

)

Budget (Number of Vertices)

PCS
Deg−Cen
Path−Cen

Random

(a) Traffic-Uniform

 0

 5

 10

 15

 20

5 10 15

R
R

 (
%

)

Budget (Number of Vertices)

GS
Deg−Cen
Path−Cen

Random
High−Delay

It−Path−Cen

(b) Traffic-Delay
Fig. 3: Comparison of baselines on Traffic: (a) PCS in the Uniform
Model; and (b) GS in the General Model.

Data PCS GS Path-Cen It-Path-Cen
DBLP-100K (unif.) 2 m − 4.5 h DNF
Twitter-50K (gen.) − 36 m DNF DNF

TABLE II: Running time comparison of our algorithms and those
proposed in [9] (budget = 5).

Since the methods by Dilkina et al. [9] do not scale for
large graphs, we compare the quality of our sampling schemes
with that of Deg-Cen and High-Delay on the full large-graph
datasets (High-Delay is replaced by Random in the uniform
model experiments as delays in this setting are equal). To
enable even higher scalability for GS, we use multi-threading
with 4 threads to compute the shortest paths (steps 4 − 7 in
Alg. 2). For the rest of the experiments, we use GS(4T).

Tab. III presents the running times of our algorithms in
both the uniform and general delay settings together with the
number of sampled pairs of each run over the full networks.
The number of samples clog(n) depends on both the size of
the network and the constant c (which we set to values not
exceeding 20). In the uniform scenario (datasets denoted unif.),
we assume delay 1 associated with nodes. PCS completes in
the order of minutes in uniform-delay networks and GS within
62 minutes on the largest DBLP dataset.

Figs. 2a-2d show the quality of GS in Twitter and DBLP.
In all cases GS performs better than alternatives for increasing
budget, since the alternatives fail to capture the dependency
between upgraded nodes and are limited to local node proper-
ties. We get higher quality in Twitter-Celeb as we use relatively
higher number of samples. The RR in DBLP is relatively low
due to the large network size and disproportionately small
budgets (5 and 10 out of 1.1M nodes). Fig. 2e presents an
analogous comparison for uniform delay. Our technique PCS
outperforms alternative in Twitter (budget k = 5). In DBLP,
Deg-Cen has similar quality to that of PCS since authors of
high degree tend to be central.

Other Experiments: The number of samples provides
a natural trade-off between running time and quality. Our
analysis shows that we usually need only small fraction of
sampled pairs to match the performance in greedy in both real-
world and synthetic data. Details of this analysis, experiments
with Airlines data and other experiments are available in [14].

V. PREVIOUS WORK

Paik et al. [11] first introduced a set of design problems
in which vertex upgrades improve the delays of adjacent
edges. Later, Krumke et al. [23] generalized this model as-
suming varying costs for vertex/edge upgrades. Lin et al. [3]
also proposed a delay minimization problem with weights
associated with undirected edges. The problems considered

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15

R
R

 (
%

)

Budget (Number of Vertices)

GS
Deg−Cen

High−Delay

(a) Twitter-Celeb

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15

R
R

 (
%

)

Budget (Number of Vertices)

GS
Deg−Cen

High−Delay

(b) Twitter-Politics

 0

 10

 20

 30

 40

 50

5 10

R
R

 (
%

)

Budget (Number of Vertices)

GS
Deg−Cen

High−Delay

(c) Twitter-Science

 0

 2

 4

 6

 8

 10

5 10

R
R

 (
%

)

Budget (Number of Vertices)

GS
Deg−Cen

High−Delay

(d) DBLP-Random

 0

 5

 10

 15

 20

 25

 30

 35

 40

DBLP Twt−Pol Twt−Cel

R
R

 (
%

)

Dataset

PCS
Deg−Cen
Random

(e) Uniform
Fig. 2: (a-d) General Model: Quality of GS and baselines on Twitter-Celeb, Twitter-Politics, Twitter-Science and DBLP. (e) Uniform Model:
Quality of PCS and baselines for budget=5 on DBLP, Twitter-Politics and Twitter-Celeb.

Data Algo. #Sample Time(min)
Twitter-Celeb (unif.) PCS 148 2.5

Twitter-Politics (unif.) PCS 166 3.5
DBLP (unif.) PCS 200 9

Twitter-Celeb (gen.) GS(4T) 148 1
Twitter-Politics (gen.) GS(4T) 64 19
Twitter-Science (gen.) GS(4T) 64 12

DBLP (gen.) GS(4T) 40 62

TABLE III: Running times of PCS and GS(4T) with budget = 5.

in Dilkina et al. [9] are closer to our setting, in that they
correspond to a general version of DMP. Delay minimization
and other global objectives (vertex eccentricity, diameter, all-
pairs shortest paths etc.) have been previously addressed by
edge addition [10], [24], [25], [26], [27]. All the above
problems, however, are based on adding new edges i.e.,
structural modification, and hence are complementary to our
setting. Other related problems involve efficient computation
of betweenness centrality [28], [20].

VI. CONCLUSIONS
In this paper, we studied and proposed solutions for the

network design problem of node delay minimization. The
problem has diverse applications in a variety of domains
including social, collaboration, transportation and communi-
cation networks. We proved that the problem is NP-hard even
for equal node delays. We proved approximation guarantees
for a restricted formulation via randomized schemes based on
VC dimension theory. We proposed and evaluated high-quality
methods for the problem based on sampling that scale to large
million-node instances and consistently outperform existing
alternatives. We evaluated our approaches on several real-
world graphs from different genres. We achieved up to two
orders of magnitude speed-up compared to alternatives from
the literature on moderate-size networks, and obtained high-
quality results in minutes on large datasets while competitors
from the literature require more than four hours.

VII. ACKNOWLEDGMENTS
Research was sponsored by the Army Research Labora-

tory and accomplished under Cooperative Agreement Number
W911NF-09-2-0053 (the ARL Network Science CTA). The
views and conclusions in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. We
also would like to thank Arlei Silva for helpful discussions.

REFERENCES

[1] A. Gupta and J. Könemann, “Approximation algorithms for network
design: A survey,” Surveys in Operations Research and Management
Science, 2011.

[2] M. E. O’Kelly and H. J. Miller, “The hub network design problem: a
review and synthesis,” Journal of Transport Geography, 1994.

[3] Y. Lin and K. Mouratidis, “Best upgrade plans for single and multiple
source-destination pairs,” GeoInformatica, 2015.

[4] Q. K. Zhu, Power distribution network design for VLSI. John Wiley
& Sons, 2004.

[5] E. B. Khalil, B. Dilkina, and L. Song, “Scalable diffusion-aware opti-
mization of network topology,” in KDD, 2014.

[6] S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti, “Approxi-
mation algorithms for reducing the spectral radius to control epidemic
spread,” arXiv preprint arXiv:1501.06614, 2015.

[7] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, “Recommendations to
boost content spread in social networks,” in WWW, 2012.

[8] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos,
“Gelling, and melting, large graphs by edge manipulation,” in CIKM,
2012.

[9] B. Dilkina, K. J. Lai, and C. P. Gomes, “Upgrading shortest paths
in networks,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 2011.

[10] A. Meyerson and B. Tagiku, “Minimizing avergae shortest path distances
via shortcut edge addition,” in APPROX-RANDOM, I. Dinur, K.Janson,
J.Noar and J. D. P. Rolim Eds, Vol. 5687. Springer, 2009.

[11] D. Paik and S. Sahni, “Network upgrading problems,” Networks, 1995.
[12] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven

analysis of information propagation in the flickr social network,” in
WWW, 2009.

[13] S. AhmadBeygi, A. Cohn, Y. Guan, and P. Belobaba, “Analysis of the
potential for delay propagation in passenger airline networks,” Journal
of Air Transport Management, 2008.

[14] S. Medya, P. Bogdanov, and A. Singh, “Towards scalable network delay
minimization,” http://arxiv.org/abs/1609.08228.

[15] B. Liu, G. Cong, D. Xu, and Y. Zeng, “Time constrained influence
maximization in social networks,” in ICDM. IEEE, 2012.

[16] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003.

[17] M. Kimura and K. Saito, “Tractable models for information diffusion
in social networks,” in PKDD, 2006.

[18] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in KDD, 2010.

[19] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, 1963.

[20] Y. Yoshida, “Almost linear-time algorithms for adaptive betweenness
centrality using hypergraph sketches,” in KDD, 2014.

[21] A. Silva, P. Bogdanov, and A. Singh, “Hierarchical in-network attribute
compression via importance sampling,” in ICDE, 2015.

[22] P. Bogdanov, M. Busch, J. Moehlis, A. K. Singh, and B. K. Szymanski,
“The social media genome: Modeling individual topic-specific behavior
in social media,” in ASONAM, 2013.

[23] S. Krumke, M. Marathe, H. Noltemeier, R. Ravi, and S. Ravi, “Approx-
imation algorithms for certain network improvement problems,” Journal
of Combinatorial Optimization, 1998.

[24] M. Papagelis, F. Bonchi, and A. Gionis, “Suggesting ghost edges for a
smaller world,” in CIKM, 2011.

[25] N. Parotisidis, E. Pitoura, and P. Tsaparas, “Selecting shortcuts for a
smaller world,” in SDM, 2015.

[26] E. D. Demaine and M. Zadimoghaddam, “Minimizing the diameter of a
network using shortcut edges,” in SWAT, ser.Lecture Notes in Computer
Science, H. Kaplan,Ed., 2010.

[27] S. Perumal, P. Basu, and Z. Guan, “Minimizing eccentricity in composite
networks via constrained edge additions,” in MILCOM, 2013.

[28] M. Riondato and E. M. Kornaropoulos, “Fast approximation of between-
ness centrality through sampling,” in WSDM, 2014.

http://arxiv.org/abs/1609.08228

